Efficient Simulation of Light Transport in Scenes with Participating Media using Photon Maps

Paper by Henrik Wann Jensen, Per H. Christensen

Presented by Abhinav Golas

Overview

- What is participative media?
- Mathematical formulation
- The Photon Map approach
- Results & Discussion

Overview

- What is participative media?
- Mathematical formulation
- The Photon Map approach
- Results & Discussion

What is participative media?

Till now

- ☆ Assumption only objects affect light
- ☆ The medium does not affect light
- What about?
 - **⊮** Fog
 - 💥 Smoke
 - 💥 Fire

What is participative media? (2)

- Light *does* interact with the certain media
 - ℜ Absorption
 - ℁ Scattering
 - 💥 Emission

Absorption

Light can be attenuated while passing through certain media

💥 Smoke

Scattering

- Light can scatter when passing through certain media
 - Single scattering light is scattered once before reaching eye
 - Multiple scattering light is scattered more than once before reaching eye

Emission

In some cases the media will emit light

℅ Fire

✗ Explosions

Overview

- What is participative media?
- Mathematical formulation
- The Photon Map approach
- Results & Discussion

Mathematical formulation

- α(x) Absorption coefficient
- σ(x) Scattering coefficient
- L_e Emitted light
- L_i In-scattered radiance

Mathematical Formulation (2)

$$\frac{\partial L(x,\vec{w})}{\partial x} = \alpha(x)L_e(x,\vec{w}) + \sigma(x)\int_{\Omega} f(x,\vec{w}',\vec{w})L(x,\vec{w}')\partial w' - \kappa(x)L(x,\vec{w})$$

- * $\kappa(x) \text{Extinction coefficient} = \alpha(x) + \sigma(x)$
- $f(x,\omega',\omega)$ Scattering function

Mathematical Formulation (3)

$$\frac{\partial L(x,\vec{w})}{\partial x} = \alpha(x)L_e(x,\vec{w}) + \sigma(x)\int_{\Omega} f(x,\vec{w}',\vec{w})L(x,\vec{w}')\partial w' - \kappa(x)L(x,\vec{w})$$

- Simply integrating along a path from x_o to x
- * $\tau(x',x)$ Transmittance along line segment along x' to x, = $e^{-\int_{x'}^{x} \kappa(\xi)\partial\xi}$

Mathematical formulation (4)

$$\begin{aligned} \alpha(x)L_e(x,\vec{w}) \Rightarrow \int_{x_0}^x \tau(x',x)\alpha(x')L_e(x',\vec{w})\partial x' \\ \sigma(x)\int_{\Omega} f(x,\vec{w}',\vec{w})L(x,\vec{w}')\partial w' \Rightarrow \int_{x_0}^x \tau(x',x)\sigma(x')\int_{\Omega} f(x,\vec{w}',\vec{w})L(x,\vec{w}')\partial w'\partial x' \\ (x,\vec{w}) = \int_{x_0}^x \tau(x',x)\alpha(x')L_e(x',\vec{w})\partial x' + \int_{x_0}^x \tau(x',x)\sigma(x')\int_{\Omega} f(x,\vec{w}',\vec{w})L(x,\vec{w}')\partial w'\partial x' - \tau(x_0,x)L(x_0,\vec{w}) \\ \tau(x,x') = e^{-\int_x^x \kappa(\xi)\partial\xi} \end{aligned}$$

And we're done with the math!

Overview

- What is participative media?
- Mathematical formulation
- The Photon Map approach
- Results & Discussion

Photon Map review

- 2 pass algorithm
 - Pass 1: Trace photons through the scene
 - Pass 2: Use photons in ray tracing to get indirect illumination estimate
- Store in 2 k-D trees

 - ℅ Global/Indirect Illumination Map (L(S|D)⁺D)

The Photon Map approach

- Extend previous surface photon map approach
- Changes
 - 😠 Define a "volume photon map"
 - ℜ Photon data structure needs to be augmented with direction
- Justification for using k-D tree for storing photons! 3-D storage data structure required
- Only indirect illumination only store photons which

Ray Marching

- Integration scheme
- Move through a region with some step Δx
 - \varkappa Integrate function with sampling at x_k
 - ✗ Used extensively for volume integration

Photon Map algorithm for participating media (Pass 1)

Rendering pass (Pass 2)

- Ray march through volume
- At each step

 $L(x_{k},\vec{\omega}) = \alpha(x_{k})L_{e}(x_{k},\vec{\omega})\Delta x_{k}$ $+ \sigma(x_{k})L_{i}(x_{k},\vec{\omega})\Delta x_{k}$ $+ e^{-\kappa(x_{k})\Delta x_{k}}L(x_{k-1},\vec{\omega})$

$$L_{i}(x,\vec{\omega}) = L_{i,d}(x,\vec{\omega}) + \frac{\sigma(x)}{\kappa(x)}L_{i,i}(x,\vec{\omega})$$

- $X \Delta x_k$ is the step can be recursively halved if radiance changes by too much
- 🔀 Step size is also jittered to avoid aliasing

Finding In-scattered radiance

$$L(x,\vec{\omega}) = \frac{d^2 \Phi(x,\vec{\omega})}{\sigma(x) d\omega dV} \qquad \qquad L_i(x,\vec{\omega}) = \int_{\Omega} f(x,\vec{\omega}',\vec{\omega}) L(x,\vec{\omega}') d\omega$$

$$L_{i}(x,\vec{\omega}) = \frac{1}{\sigma(x)} \int_{\Omega} f(x,\vec{\omega}',\vec{\omega}) \frac{d^{2}\Phi(x,\vec{\omega})}{dV}$$
$$L_{i}(x,\vec{\omega}) \approx \frac{1}{\sigma(x)} \sum_{p=1}^{n} f(x,\vec{\omega}_{p}',\vec{\omega}) \frac{\Delta \Phi_{p}(x,\vec{\omega}_{p}')}{\frac{4}{3}\pi r^{3}}$$

- Gather n nearest photons and use their flux ΔΦ to collect radiance
- In this step we only use indirect illumination, hence only those photons having indirect illumination are used

Overview

- What is participative media?
- Mathematical formulation
- The Photon Map approach
- Results & Discussion

Results

Volume caustics!

Results (2)

Scattering and absorption in an anisotropic heterogeneous media

Results (3)

Volume caustics for water

Results (4)

Results (5)

God (or crepuscular) rays

Advantages/Pitfalls

Advantages

- ✗ Claimed to be faster than Monte-Carlo methods
- 💥 Better image quality
- Pitfalls

- Doesn't scale to large scenes too well people usually put it in future work
- Still need light sources to model emissive media no heuristic for naturally emitting media

References

- Efficient Simulation of Light Transport in Scenes with Participating Media using Photon Maps – Henrik Wann Jensen, Per H. Christensen
- Smoke simulation for Large Scale Media Fedkiw et al.
- Per H. Christensen http://www.seanet.com/~myandper/per.htm
- Henrik Wann Jensen <u>http://graphics.ucsd.edu/~henrik/</u>
- Certain images from presentation by Jen-Yuan Chiang on the same paper (<u>http://www.csie.ntu.edu.tw/~cyy/courses/rendering/o5fall/a</u> <u>ssignments/pres/slides/volume.ppt</u>)